Publicaciones de Investigación
URI permanente para esta colección
Examinar
Envíos recientes
1 - 2 de 2
- ArtículoStructural, Thermal, Rheological, and Morphological Characterization of the Starches of Sweet and Bitter Native Potatoes Grown in the Andean Region(MDPI, Polymers, 2023-11-16)This study aimed to extract and characterize the morphological, physicochemical, thermal, and rheological properties of the starches of native potatoes grown in the department of Puno. Among the varieties evaluated were sweet native potato varieties Imilla Negra (Solanum tuberosum spp. Andígena), Imilla Blanca (Solanum tuberosum spp. Andígena), Peruanita, Albina or Lomo (Solanum chaucha), and Sutamari, and the bitter potatoes Rucki or Luki (Solanum juzepczukii Buk), Locka (Solanum curtilobum), Piñaza (Solanum curtilobum), and Ocucuri (Sola-num curtilobum), acquired from the National Institute of Agrarian Innovation (INIA-Puno). The proximal composition, amylose content, and morphological, thermal, and rheological properties that SEM, DSC, and a rheometer determined, respectively, were evaluated, and the data obtained were statistically analyzed using a completely randomized design and then a comparison of means using Tukey’s LSD test. The results show a significant difference in the proximal composition (p ≤ 0.05) concerning moisture content, proteins, fat, ash, and carbohydrates. Thus, the amylose content was also determined, ranging from 23.60 ± 0.10 to 30.33 ± 0.15%. The size morphology of the granules is 13.09–47.73 µm; for the thermal and rheological properties of the different varieties of potato starch, it is shown that the gelatinization temperature is in a range of 57 to 62 ◦C and, for enthalpy, between 3 and 5 J/g.
- ArtículoUtilization of Sustainable Ingredients (Cañihua Flour, Whey, and Potato Starch) in Gluten-Free Cookie Development: Analysis of Technological and Sensorial Attributes(MDPI. Foods, 2024-05-11)In recent years, the consumption of gluten-free products has increased due to the increasing prevalence of celiac disease and the increased preference for gluten-free diets. This study aimed to make cookies using a mixture of cañihua flour, whey, and potato starch. The use of a Box–Behnken design allowed for flexible ingredient proportions and physicochemical properties, centesimal composition, color, texture, and sensory attributes to be evaluated through consumer tests (Sorting and acceptability). The results highlighted significant variations in physicochemical data, composition, color, and texture across formulations. The blend with 38.51% cañihua flour, 10.91% sweet whey, 25.69% potato starch, 8.34% margarine, 11.10% sugar, 0.19% sodium chloride, 0.51% baking powder, 0.51% vanilla essence, and 4.24% egg exhibited superior sensory appeal. This formulation boasted excellent texture, aroma, flavor, color, and appearance, indicating high sensory and physicochemical quality. The use of cañihua flour, sweet whey, and potato starch not only provides a gluten-free option but also delivers a nutritious and sensorily pleasing choice for those with dietary restrictions. Future research could explore the commercial viability of producing these cookies on a larger scale, as well as investigating the potential health benefits of these ingredients.